Efficient High Power 2 micron Tm3+-Doped Fiber Laser, Phase II

Completed Technology Project (2004 - 2006)

Project Introduction

This proposal is for the development of new Tm3+ doped germanate glass fibers for efficient high power 2-micron fiber lasers capable of generating an output power of up to hundreds watts. We propose to use Tm3+ doped germanate glass fibers because silica glass fiber is not the ideal host for lasers at wavelength of 2-micron and longer. Germanate glass exhibits lower phonon energy compared to silica glass, increasing the quantum efficiency of 3F4 level of Tm3+ ions. Importantly, Tm3+ can be highly doped into germanate glasses, which results in so called cross-relaxation, dramatically improving the quantum efficiency. We will develop double-clad single mode germanate glass fibers with greater than 6wt% Tm3+ concentration to take full advantages of this Tm3+ cross-relaxation process, developing highly efficient fiber lasers at 2-micron. This type of fiber laser is useful for LIDAR applications, can also be used to pump Ho3+ doped crystals to generate extremely high power 2-micron lasers.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead Organization	NASA Center	Hampton, Virginia
NP Photonics, Inc.	Supporting Organization	Industry	Tucson, Arizona

Efficient High Power 2 micron Tm3+-Doped Fiber Laser, Phase II

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	
Organizational Responsibility	
Project Management	
Technology Areas	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Efficient High Power 2 micron Tm3+-Doped Fiber Laser, Phase II

Completed Technology Project (2004 - 2006)

Primary U.S. Work Locations	
Arizona	Virginia

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - └─ TX08.1 Remote Sensing Instruments/Sensors
 └─ TX08.1.5 Lasers

